IJMZ_2024v14n1

International Journal of Molecular Zoology 2024, Vol.14, No.1, 31-43 http://animalscipublisher.com/index.php/ijmz 41 Bartolec T., Smith D., Pang C., Xu Y., Hamey J., and Wilkins M., 2019, Crosslinking mass spectrometry analysis of the yeast nucleus reveals extensive protein-protein interactions not detected by systematic two-hybrid or affinity purification-mass spectrometry, Analytical chemistry, 92(2): 1874-1882. https://doi.org/10.1021/acs.analchem.9b03975 PMid:31851481 Beck E., Healey H., Small C., Currey M., Desvignes T., Cresko W., and Postlethwait J., 2021, Advancing human disease research with fish evolutionary mutant models, Trends in genetics: TIG, 38(1): 22-44. https://doi.org/10.1016/j.tig.2021.07.002 PMid:34334238 PMCid:PMC8678158 Bednarczyk M., Dunisławska A., Stadnicka K., and Grochowska E., 2021, Chicken embryo as a model in epigenetic research, Poultry Science, 100(7):101164. https://doi.org/10.1016/j.psj.2021.101164 PMid:34058565 PMCid:PMC8170499 Blencowe M., Arneson D., Ding J., Chen Y., Saleem Z., and Yang X., 2019, Network modeling of single-cell omics data: challenges, opportunities, and progresses, Emerging Topics in Life Sciences, 3: 379-398. https://doi.org/10.1042/ETLS20180176 PMid:32270049 PMCid:PMC7141415 Castro L., Liu I., and Filbin M., 2022, Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods, Neuro-Oncology, 25: 234 - 247. https://doi.org/10.1093/neuonc/noac211 PMid:36197833 PMCid:PMC9925698 Corsi A.K., Wightman B., and Chalfie M., 2015, A transparent window into biology: a primer on caenorhabditis elegans, WormBook, 200(2): 1-31. https://doi.org/10.1895/wormbook.1.177.1 PMid:26087236 PMCid:PMC4781331 Costa A.D., and Shepherd I.T., 2009, Zebrafish development and genetics: introducing undergraduates to developmental biology and genetics in a large introductory laboratory class, Zebrafish in Education, 6(2): 169-177. https://doi.org/10.1089/zeb.2008.0562 PMid:19537943 PMCid:PMC2774836 Efremova M., and Teichmann S., 2020, Computational methods for single-cell omics across modalities, Nature Methods, 17: 14-17. https://doi.org/10.1038/s41592-019-0692-4 PMid:31907463 Farrell J., Wang Y., Riesenfeld S., Shekhar K., Regev A., and Schier A., 2018, Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis, Science, 360: 6392. https://doi.org/10.1126/science.aar3131 PMid:29700225 PMCid:PMC6247916 Galazzi R., Jesus J., and Arruda M., 2019, Sample Preparation Focusing on Plant Omics, Advances in experimental medicine and biology, 1073: 161-185. https://doi.org/10.1007/978-3-030-12298-0_7 PMid:31236843 Gerri C., Menchero S., Mahadevaiah S., Turner J., and Niakan K., 2020, Human embryogenesis: a comparative perspective, Annual Review of Cell and Developmental Biology, 36: 411-440. https://doi.org/10.1146/annurev-cellbio-022020-024900 PMid:33021826 Griffiths J., Scialdone A., and Marioni J., 2018, Using single‐cell genomics to understand developmental processes and cell fate decisions, Mol. Syst. Biol., 14: e8046. https://doi.org/10.15252/msb.20178046 PMid:29661792 PMCid:PMC5900446 Irie N., and Kuratani S., 2011, Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis, Nature Communications, 2: 248. https://doi.org/10.1038/ncomms1248 PMid:21427719 PMCid:PMC3109953 Irion U., and Nüsslein-Volhard C., 2022, Developmental genetics with model organisms, Proceedings of the National Academy of Sciences of the United States of America, 119(30): e2122148119. https://doi.org/10.1073/pnas.2122148119 PMid:35858396 PMCid:PMC9335277 Karthaus W., Hofree M., Choi D., Linton E., Turkekul M., Bejnood A., Carver B., Gopalan A., Abida W., Laudone V., Biton M., Chaudhary O., Xu T., Masilionis I., Manova K., Mazutis L., Pe’er D., Regev A., and Sawyers C., 2020, Regenerative potential of prostate luminal cells revealed by single-cell analysis, Science, 368: 497-505. https://doi.org/10.1126/science.aay0267 PMid:32355025 PMCid:PMC7313621

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==