IJMVR_2024v14n5

International Journal of Molecular Veterinary Research, 2024, Vol.14, No.5, 211-218 http://animalscipublisher.com/index.php/ijmvr 218 Ricci A., Allende A., Bolton D., Chemaly M., Davies R., Escámez P., Girones R., Herman L., Koutsoumanis K., Lindqvist R., Nørrung B., Robertson L., Ru G., Sanaa M., Skandamis P., Speybroeck N., Simmons M., Kuile B., Threlfall J., Wahlström H., Acutis P., Andréoletti O., Goldmann W., Langeveld J., Windig J., Pelaez O., and Snary E., 2017, Genetic resistance to transmissible spongiform encephalopathies (TSE) in goats, EFSA Journal, 15(8): e04962. https://doi.org/10.2903/j.efsa.2017.4962 Schultz É., Santana T., Silva F., Garcia A., Oliveira H., Rodrigues M., and Brito L., 2020, Short communication: genetic parameter estimates for caprine arthritis encephalitis in dairy goats, Journal of Dairy Science, 103(7): 6407-6411. https://doi.org/10.3168/jds.2019-17740 Shrivastava K., Kumar P., Khan M., Sahoo N., Prakash O., Kumar A., Panigrahi M., Chauhan A., Bhushan B., Prasad A., Nasir A., and Patel B., 2018, Exploring the molecular basis of resistance/ susceptibility to mixed natural infection of Haemonchus contortus in tropical Indian goat breed, Veterinary Parasitology, 262: 6-10. https://doi.org/10.1016/j.vetpar.2018.09.003 Shrivastava K., Singh A., Jadav K., Shukla S., and Tiwari S., 2022, Caprine haemonchosis: optimism of breeding for disease resistance in developing countries, Journal of Applied Animal Research, 50: 213-224. https://doi.org/10.1080/09712119.2022.2056465 Silva F., Bambou J., Oliveira J., Barbier C., Fleury J., Machado T., and Mandonnet N., 2018, Genome wide association study reveals new candidate genes for resistance to nematodes in Creole goat, Small Ruminant Research, 166: 109-114. https://doi.org/10.1016/J.SMALLRUMRES.2018.06.004 Tsukahara Y., Gipson T., Hart S., Dawson L., Wang Z., Puchała R., Sahlu T., and Goetsch A., 2021a, Genetic selection for resistance to gastrointestinal parasitism in meat goats and hair sheep through a performance test with artificial infection of Haemonchus contortus, Animals, 11(7): 1902. https://doi.org/10.3390/ani11071902 Tsukahara Y., Gipson T., Hart S., Dawson L., Wang Z., Puchała R., Sahlu T., and Goetsch A., 2021b, PSXIV-19 heritability for growth and resistance to gastrointestinal parasitism in meat goats and hair sheep, Journal of Animal Science, 99(Supplement_3): 492-493. https://doi.org/10.1093/jas/skab235.867 Tsukahara Y., Gipson T., Hart S., Dawson L., Wang Z., Puchała R., Sahlu T., and Goetsch A., 2021, Genetic selection for resistance to gastrointestinal parasitism in meat goats and hair sheep through a performance Test with artificial infection of Haemonchus contortus, Animals, 11(7): 1902. https://doi.org/10.3390/ani11071902 Zheng Z., Wang X., Li M., Li Y., Yang Z., Wang X., Pan X., Gong M., Zhang Y., Guo Y., Wang Y., Liu J., Cai Y., Chen Q., Okpeku M., Colli L., Cai D., Wang K., Huang S., Sonstegard T., Esmailizadeh A., Zhang W., Zhang T., Xu Y., Xu N., Yang Y., Han J., Chen L., Lesur J., Daly K., Bradley D., Heller R., Zhang G., Wang W., Chen Y., and Jiang Y., 2020, The origin of domestication genes in goats, Science Advances, 6(21): eaaz5216. https://doi.org/10.1126/sciadv.aaz5216 Disclaimer/Publisher’s Note The statements, opinions, and data contained in all publications are solely those of the individual authors and contributors and do not represent the views of the publishing house and/or its editors. The publisher and/or its editors disclaim all responsibility for any harm or damage to persons or property that may result from the application of ideas, methods, instructions, or products discussed in the content. Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==