International Journal of Molecular Veterinary Research, 2024, Vol.14, No.5, 194-201 http://animalscipublisher.com/index.php/ijmvr 200 Cadavid P., Balvin D., Julio R., Ramos E., Gutierrez J., Buitrago J., and Garcia R., 2024, Bovine tuberculosis testing in Colombia: comparative histopathological, microbiological, and molecular biology findings, Journal of Buffalo Science, 13: 53-63. https://doi.org/10.6000/1927-520x.2024.13.06 Clavijo A., Wright P., and Kitching P., 2004, Developments in diagnostic techniques for differentiating infection from vaccination in foot-and-mouth disease, The Veterinary Journal, 167(1): 9-22. Craig M., König G., Benítez D., and Draghi M., 2015, Molecular analyses detect natural coinfection of water buffaloes (Bubalus bubalis) with bovine viral diarrhea viruses (BVDV) in serologically negative animals, Revista Argentina de Microbiologia, 47(2): 148-151. https://doi.org/10.1016/j.ram.2015.03.001 Damaty H., Fawzi E., Neamat‐Allah A., Elsohaby I., Abdallah A., Farag G., El-Shazly Y., and Mahmmod Y., 2021, Characterization of foot and mouth disease virus serotype SAT-2 in swamp water buffaloes (Bubalus bubalis) under the Egyptian smallholder production system, Animals, 11(6): 1697. https://doi.org/10.3390/ani11061697 El-Ansary R.E., Kasem S., El-Tabakh M.A., Badr Y., and Abdel-Moneim A.S., 2023, Isolation, molecular characterization, and genetic diversity of recently isolated foot-and-mouth disease virus serotype A in Egypt, PloS One, 18(12): e0295319. Elhaig M., and Elsheery M., 2014, Molecular investigation of foot-and-mouth disease virus in domestic bovids from Gharbia, Egypt, Tropical Animal Health and Production, 46: 1455-1462. https://doi.org/10.1007/s11250-014-0665-7 Galon E., Moumouni P., Ybañez R., Ringo A., Efstratiou A., Lee S., Liu M., Guo H., Gao Y., Li J., Salces C., Maurillo B., Boldbaatar D., Ybañez A., and Xuan X., 2019, First molecular detection and characterization of tick-borne pathogens in water buffaloes in Bohol, Philippines, Ticks and Tick-Borne Diseases, 10(4): 815-821. https://doi.org/10.1016/j.ttbdis.2019.03.016 Grandoni F., Signorelli F., Martucciello A., Napolitano F., De Donato I., Donniacuo A., Di Vuolo G., De Matteis G., Del Zotto G., Davis W., and De Carlo E., 2023, In‐depth immunophenotyping reveals significant alteration of lymphocytes in buffalo with brucellosis, Cytometry Part A, 103: 528-536. https://doi.org/10.1002/cyto.a.24710 Guedes I., De Souza G., De Paula Castro J., De Souza Filho A., Cavalini M., Taniwaki S., Maia A., Pereira I., and Heinemann M., 2020, Identification of pathogenic leptospira species in the urogenital tract of water buffaloes (Bubalus bubalis) from the amazon river delta region, Brazil, Frontiers in Veterinary Science, 7: 269. https://doi.org/10.3389/fvets.2020.00269 Jaiswal S., Jagannadham J., Kumari J., Iquebal M., Gurjar A., Nayan V., Angadi U., Kumar S., Kumar R., Datta T., Rai A., and Kumar D., 2021, Genome wide prediction, mapping and development of genomic resources of mastitis associated genes in water buffalo, Frontiers in Veterinary Science, 8: 593871. https://doi.org/10.3389/fvets.2021.593871 Lecchi C., Catozzi C., Zamarian V., Poggi G., Borriello G., Martucciello A., Vecchio D., Decarlo E., Galiero G., and Ceciliani F., 2019, Characterization of circulating miRNA signature in water buffaloes (Bubalus bubalis) during Brucella abortus infection and evaluation as potential biomarkers for non-invasive diagnosis in vaginal fluid, Scientific Reports, 9(1): 1945. https://doi.org/10.1038/s41598-018-38365-x Lv C., Fu Z., Lu K., Yue R., Wang T., Cao X., Zhu C., Li H., Hong Y., and Lin J., 2018, A perspective for improving the sensitivity of detection: the application of multi-epitope recombinant antigen in serological analysis of buffalo schistosomiasis, Acta Tropica, 183: 14-18. https://doi.org/10.1016/j.actatropica.2018.03.025 Martucciello A., Mazzone P., Napolitano F., Bezos J., Grandoni F., Boniotti M., Cagiola M., Cappelli G., Di Vuolo G., Galiero G., Signorelli F., and De Carlo E., 2024, Intradermal tuberculin test in water buffalo (Bubalus bubalis): experimental use of mycobacterial antigens for the diagnosis of bovine tuberculosis, Journal of Buffalo Science, 13: 46-52. https://doi.org/10.6000/1927-520x.2024.13.05 Mingala C., Konnai S., Cruz L., Onuma M., and Ohashi K., 2009, Comparative moleculo-immunological analysis of swamp-and riverine-type water buffaloes responses, Cytokine, 46(2): 273-282. https://doi.org/10.1016/j.cyto.2009.02.006 Nguyen A., Tiawsirisup S., and Kaewthamasorn M., 2020, Molecular detection and genetic characterization of Anaplasma marginale andAnaplasma platys-like (Rickettsiales: Anaplasmataceae) in water buffalo from eight provinces of Thailand, BMC Veterinary Research, 16: 1-12. https://doi.org/10.1186/s12917-020-02585-z Obregón D., Rabelo M., Giglioti R., Bilhassi T., Néo T., Corona B., Alfonso P., Machado R., and Oliveira M., 2016, Standardization of a SYBR green based real-time PCR system for detection and molecular quantification of Babesia bovis and B. bigemina in water buffaloes (Bubalus bubalis), Journal of Buffalo Science, 5: 44-52. https://doi.org/10.6000/1927-520X.2016.05.02.4 Rehman A., Ullah R., Khan M., and Abidi S., 2020, NGlutathione-S-transferase: an important diagnostic antigen of liver amphistome Gigantocotyle explanatum, infecting the Indian water buffalo, Acta Tropica, 205: 105400. https://doi.org/10.1016/j.actatropica.2020.105400
RkJQdWJsaXNoZXIy MjQ4ODYzNA==