International Journal of Molecular Veterinary Research, 2024, Vol.14, No.5, 185-193 http://animalscipublisher.com/index.php/ijmvr 192 Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Ciancanelli M., Abel L., Zhang S., and Casanova J., 2016, Host genetics of severe influenza: from mouse Mx1 to human IRF7, Current Opinion in Immunology, 38: 109-20. https://doi.org/10.1016/j.coi.2015.12.002 Dodantenna N., Cha J., Chathuranga K., Chathuranga W., Weerawardhana A., Ranathunga L., Kim Y., Jheong W., and Lee J., 2024, The African swine fever virus virulence determinant DP96R suppresses type I IFN production targeting IRF3, International Journal of Molecular Sciences, 25(4): 2099. https://doi.org/10.3390/ijms25042099 Gallardo C., Sánchez E., Pérez-Núñez D., Nogal M., De León P., Carrascosa Á., Nieto R., Soler A., Arias M., and Revilla Y., 2018, African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses, Vaccine, 36(19): 2694-2704. https://doi.org/10.1016/j.vaccine.2018.03.040 Ju X., Li F., Li J., Wu C., Xiang G., Zhao X., Nan Y., Zhao D., and Ding Q., 2021, Genome-wide transcriptomic analysis of highly virulent African swine fever virus infection reveals complex and unique virus host interaction, Veterinary Microbiology, 261: 109211. https://doi.org/10.1016/j.vetmic.2021.109211 Koltsov A., Sukher M., Krutko S., Belov S., Korotin A., Rudakova S., Morgunov S., and Koltsova G., 2024, Towards safe African swine fever vaccines: the A137R gene as a tool to reduce virulence and a promising serological DIVA marker candidate, Animals : an Open Access Journal from MDPI, 14(17): 2469. https://doi.org/10.3390/ani14172469 Li D., Peng J., Wu J., Yi J., Wu P., Qi X., Ren J., Peng G., Duan X., Ru Y., Liu H., Tian H., and Zheng H., 2023, African swine fever virus MGF-360-10L is a novel and crucial virulence factor that mediates ubiquitination and degradation of JAK1 by recruiting the E3 ubiquitin ligase HERC5, mBio, 14(4): e00606-23. https://doi.org/10.1128/mbio.00606-23 Li J., Song J., Kang L., Huang L., Zhou S., Hu L., Zheng J., Li C., Zhang X., He X., Zhao D., Bu Z., and Weng C., 2021, pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production, PLoS Pathogens, 17(7): e1009733. https://doi.org/10.1371/journal.ppat.1009733 Liu Y., Shen Z., Xie Z., Song Y., Li Y., Liang R., Gong L., Di D., Liu J., Liu J., Chen Z., Yu W., Lv L., Zhong Q., Liao X., Tian C., Wang R., Song Q., Wang H., Peng G., and Chen H., 2023, African swine fever virus I73R is a critical virulence-related gene: a potential target for attenuation, Proceedings of the National Academy of Sciences of the United States of America, 120(15): e2210808120. https://doi.org/10.1073/pnas.2210808120 Lv L., Zhang T., Jia H., Zhang Y., Ahsan A., Zhao X., Chen T., Shen Z., and Shen N., 2022, Temporally integrated transcriptome analysis reveals ASFV pathology and host response dynamics, Frontiers in Immunology, 13: 995998. https://doi.org/10.3389/fimmu.2022.995998 O'Donnell V., Holinka L., Gladue D., Sanford B., Krug P., Lu X., Arzt J., Reese B., Carrillo C., Risatti G., and Borca M., 2015, African swine fever virus georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus, Journal of Virology, 89: 6048-6056. https://doi.org/10.1128/JVI.00554-15 O'Donnell V., Holinka L., Krug P., Gladue D., Carlson J., Sanford B., Alfano M., Kramer E., Lu Z., Arzt J., Reese B., Carrillo C., Risatti G., and Borca M., 2015, African swine fever virus georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when Administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge, Journal of Virology, 89: 8556-8566. https://doi.org/10.1128/JVI.00969-15 Qi C., Zhang Y., Wang Z., Li J., Hu Y., Li L., Ge S., Wang Q., Wang Y., Wu X., and Wang Z., 2023, Development and application of a TaqMan-based real-time PCR method for the detection of the ASFV MGF505-7R gene, Frontiers in Veterinary Science, 10: 1093733. https://doi.org/10.3389/fvets.2023.1093733 Ramírez-Medina E., Vuono E., O'Donnell V., Holinka L., Silva E., Rai A., Pruitt S., Carrillo C., Gladue D., and Borca M., 2019, Differential effect of the deletion of african swine fever virus virulence-associated genes in the induction of attenuation of the highly virulent georgia strain, Viruses, 11(7): 599. https://doi.org/10.3390/v11070599 Ramírez-Medina E., Vuono E., Pruitt S., Rai A., Espinoza N., Valladares A., Spinard E., Silva E., Velazquez-Salinas L., Gladue D., and Borca M., 2022, ASFV gene A151R is involved in the process of virulence in domestic swine, Viruses, 14(8): 1834. https://doi.org/10.3390/v14081834 Ramírez-Medina E., Vuono E., Rai A., Espinoza N., Valladares A., Spinard E., Velazquez-Salinas L., Gladue D., and Borca M., 2023, Evaluation of the function of ASFV gene E66L in the process of virus replication and virulence in swine, Viruses, 15(2): 566. https://doi.org/10.3390/v15020566
RkJQdWJsaXNoZXIy MjQ4ODYzNA==