IJMVR_2024v14n1

International Journal of Molecular Veterinary Research 2024, Vol.14, No.1, 9-16 http://animalscipublisher.com/index.php/ijmvr 16 In conclusion, gene-edited cows represent a promising field that can be used to increase dairy product yield and quality while reducing environmental impact. However, along with success come challenges, and through collaboration and innovation, gene-edited cow technology can achieve sustainable and responsible applications in agriculture, meeting the growing global demand for food. Future trends will focus on more precise gene editing, the integration of genomics and breeding, and the continuous evolution of regulations. Only through global collaboration among society, the research community, and governments can this vision be realized, achieving sustainable food production. References Chen S., Bobe G., Zimmerman S., Hammond E.G., Luhman C.M., Boylston T.D., Freeman A.E., and Beitzand D.C., 2004, Physical and sensory properties of dairy products from cows with various milk fatty acid compositions, J. Agric. Food Chem., 52(11): 3422-3428. https://doi.org/10.1021/jf035193z PMid:15161209 Edick A.M., Audette J., and Burgos S.A., 2021, CRISPR-Cas9-mediated knockout of GCN2 reveals a critical role in sensing amino acid deprivation in bovine mammary epithelial cells, J. Dairy Sci., 104(1): 1123-1135. https://doi.org/10.3168/jds.2020-18700 PMid:33162067 Horodecka K., and Düchler M., 2021, CRISPR/Cas9: principle, applications, and delivery through extracellular vesicles, Int. J. Mol. Sci., 22(11): 6072. https://doi.org/10.3390/ijms22116072 PMid:34199901 PMCid:PMC8200053 Hou Y.X., Wei W.J., Chen H., Gu Y., and Gong S.Y., 2022, Application of CRISPR/Cas9 technology in crop breeding, Hubei Agricultural Sciences, 61(S1): 4-10. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., and Charpentier E., 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337(6096): 816-821. https://doi.org/10.1126/science.1225829 PMid:22745249 PMCid:PMC6286148 Kęsek-Woźniak M., Danielewicz K., Para J., Majewska A., Śmieszek A., Paszczyk B., and Zielak-Steciwko A., 2023, ACACA, FASN and SCD gene expression in somatic cells throughout lactation and its relation to fatty acid profile in cow milk, Anim. Sci. Pap. Rep., 41(1): 17-26. Ma M.D., Shang M.Y., and Liu Y.C., 2023, Application and prospect of CRISPR-Cas9 system in tumor biology, Synthetic Biology Journal, 4(4): 703-719. Mojica M.J., Juez G., and Rodríguez-Valera F., 1993, Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites, Mol. Microbiol., 9: 613-621. https://doi.org/10.1111/j.1365-2958.1993.tb01721.x PMid:8412707 Petitclerc D., Lacasse P., Girard C.L., Boettcher P.J., and Block E., 2000, Genetic, nutritional, and endocrine support of milk synthesis in dairy cows, J. Anim. Sci., 78(S3): 59-77. https://doi.org/10.2527/2000.78suppl_359x Priyadharsini R., Jayalalitha V., and Arulkumar S., 2023, Designer milk: in the view of molecular genetics, Int. J. Vet. Sci. Anim. Husb., SP-8(5): 65-72. Wang L.Y., Gao Y.P., Wang J.P., Huang N., Jiang Q., Ju Z.H., Yang C.H., Wei X.C., Xiao Y., Zhang Y.R., Yang L., and Huang J.M., 2022, Selection signature and CRISPR/Cas9-Mediated gene knockout analyses reveal ZC3H10 involved in cold adaptation in Chinese native cattle, Genes, 13(10): 1910. https://doi.org/10.3390/genes13101910 PMid:36292795 PMCid:PMC9601761 Zhang H., Yang B.G., Xu X., Feng X.Y., Du W.H., Hao H.S., Zhu H.B., Zahng P.P., and Zhao X.M., 2023, Research progress on the mechanism of heat stress affecting the development of dairy cow embryos, Acta Veterinaria Et Zootechnica Sinica, 54(7): 2692-2700.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==