Animal Molecular Breeding 2024, Vol.14, No.2, 178-186 http://animalscipublisher.com/index.php/amb 185 Kershanskaya O.I., Yessenbaeva G.L., Nelidova D.S., Karabekova A.N., and Sadullaeva Z.N., 2022, CRISPR/Cas genome editing perspectives for barley breeding, Physiologia Plantarum, 174(3): e13686. https://doi.org/10.1111/ppl.13686 PMID: 35451132 Li C., Brant E., Budak H., and Zhang B.H., 2021, CRISPR/Cas: a nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University-Science B, 22(4): 253-284. https://doi.org/10.1631/jzus.B2100009 PMID: 33835761 PMCID: PMC8042526 Liang P.P., Xu Y.W., Zhang X.Y., Ding C.H., Huang R., Zhang Z., Lv J., Xie X.X., Chen Y.X., Li Y.J., Sun Y., Bai Y.F., Zhou S.Y., Ma W.B., Zhou C.Q., and Huang J.J., 2015, CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes, Protein & Cell, 6(5): 363-372. https://doi.org/10.1007/s13238-015-0153-5 PMID: 25894090 PMCID: PMC4417674 Liu H., Ding Y.D., Zhou Y.Q., Jin W.Q., Xie K.B., and Chen L.L., 2017, CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants, Molecular Plant, 10(3): 530-532. https://doi.org/10.1016/j.molp.2017.01.003 PMID: 28089950 Liu T.F., Ji J., Cheng Y.Y., Zhang S.C., Wang Z.R., Duan K.X., and Wang Y.C., 2023, CRISPR/Cas9-mediated editing of GmTAP1 confers enhanced resistance to Phytophthora sojae in soybean, Journal of Integrative Plant Biology, 65(7): 1609-1612. https://doi.org/10.1111/jipb.13476 PMID: 36896979 Liu Z.G., Wu T.W., Xiang G.M., Wang H., Wang B.Y., Feng Z., Mu Y.L., and Li K., 2022, Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing, International Journal of Molecular Sciences, 23(13): 7331. https://doi.org/10.3390/ijms23137331 PMID: 35806334 PMCID: PMC9266401 Martínez M.I.S, Bracuto V., Koseoglou E., Appiano M., Jacobsen E., Visser R.G.F., Wolters A.A., and Bai Y..L, 2020, CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew, BMC Plant Biology, 20(1): 284. https://doi.org/10.1186/s12870-020-02497-y PMID: 32560695 PMCID: PMC7304142 Memi F., Ntokou A., and Papangeli I., 2018, CRISPR/Cas9 gene-editing: research technologies, clinical applications and ethical considerations, Seminars in Perinatology, 42(8): 487-500. https://doi.org/10.1053/j.semperi.2018.09.003 PMID: 30482590 Mushtaq M., Sakina A., Wani S.H., Shikari A.B., Tripathi P., Zaid A., Galla A., Abdelrahman M., Sharma M., Singh A.K., and Salgotra R.K., 2019, Harnessing genome editing techniques to engineer disease resistance in plants, Frontiers in Plant Science, 10: 550. https://doi.org/10.3389/fpls.2019.00550 PMID: 31134108 PMCID: PMC6514154 Ran F.A., Hsu P.D., Wright J., Agarwala V., Agarwala V., Scott D.A., and Zhang F., 2013, Genome engineering using the CRISPR-Cas9 system, Nature Protocols, 8: 2281-2308. https://doi.org/10.1038/nprot.2013.143 Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T., and Kondo A., 2017, Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion, Nature Biotechnology, 35(5): 441-443. https://doi.org/10.1038/nbt.3833 PMID: 28346401 Tao S., Chen H.M., Li N., and Liang W., 2022, The application of the CRISPR-Cas system in antibiotic resistance, Infection and Drug Resistance, 15: 4155-4168. https://doi.org/10.2147/IDR.S370869 PMID: 35942309 PMCID: PMC9356603 Wan D.Y., Guo Y., Cheng Y., Hu Y., Xiao S.Y., Wang Y.J., and Wen Y.Q., 2020, CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera), Horticulture Research, 7: 116. https://doi.org/10.1038/s41438-020-0339-8 PMID: 32821399 PMCID: PMC7395163 Wang S.T., Qu Z.X., Huang Q.Y., Zhang J.F., Lin S., Yang Y.C., Meng F.M., Li J.H., and Zhang K.L., 2022, Application of gene editing technology in resistance breeding of livestock, Life, 12(7): 1070. https://doi.org/10.3390/life12071070 PMID: 35888158 PMCID: PMC9325061 Yuan M.K., Zhang J.C., Gao Y.P., Yuan Z.K., Zhu Z.L., Wei Y.K., Wu T., Han J., and Zhang Y., 2021, HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis, The Journal of Biological Chemistry, 296: 100497. https://doi.org/10.1016/j.jbc.2021.100497
RkJQdWJsaXNoZXIy MjQ4ODYzNA==