AMB_2024v14n1

Animal Molecular Breeding 2024, Vol.14, No.1, 106-118 http://animalscipublisher.com/index.php/amb 117 Tanihara F., Hirata M., Nguyen N., Sawamoto O., Kikuchi T., and Otoi T., 2021, One-step generation of multiple gene-edited pigs by electroporation of the CRISPR/Cas9 system into zygotes to reduce xenoantigen biosynthesis, International Journal of Molecular Sciences, 22(5): 2249. https://doi.org/10.3390/ijms22052249 PMid:33668187 PMCid:PMC7956194 Tejada N., Lopes J., Gonçalves L., Conceição I., Franco G., Ghirotto B., and Câmara N., 2022, AIM2 as a putative target in acute kidney graft rejection, Frontiers in Immunology, 13: 839359. https://doi.org/10.3389/fimmu.2022.839359 PMid:36248890 PMCid:PMC9561248 Teng L., Shen L., Zhao W., Wang C., Feng S., Wang Y., Bi Y., Rong S., Shushakova N., Haller H., Chen J., and Jiang H., 2022, SLAMF8 participates in acute renal transplant rejection via tlr4 pathway on pro-inflammatory macrophages, Frontiers in Immunology, 13: 846695. https://doi.org/10.3389/fimmu.2022.846695 PMid:35432371 PMCid:PMC9012444 Wang R., Ruan M., Zhang R., Chen L., Li X., Fang B., Li C., Ren X., Liu J., Xiong Q., Zhang L., Jin Y., Li L., Li R., Wang Y., Yang H., and Dai Y., 2018, Antigenicity of tissues and organs fromGGTA1/CMAH/β4GalNT2 triple gene knockout pigs, Journal of Biomedical Research, 33(4): 235. https://doi.org/10.7555/JBR.32.20180018 PMid:30007952 PMCid:PMC6813527 Wolf E., Kemter E., Klymiuk N., and Reichart B., 2019, Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation, Animal Frontiers: The Review Magazine of Animal Agriculture, 9(3): 13-20. https://doi.org/10.1093/af/vfz014 PMid:32002258 PMCid:PMC6951927 Wu H., Lian M., and Lai L., 2023, Multiple gene modifications of pigs for overcoming obstacles of xenotransplantation, National Science Open, 2(5): 20230030. https://doi.org/10.1360/nso/20230030 Xi J., Zheng W., Chen M., Zou Q., Tang C., and Zhou X., 2023, Genetically engineered pigs for xenotransplantation: hopes and challenges, Frontiers in Cell and Developmental Biology, 10: 1093534. https://doi.org/10.3389/fcell.2022.1093534 PMid:36712969 PMCid:PMC9878146 Xu K., Yu H., Chen S., Zhang Y., Guo J., Yang C., Jiao D., Nguyen T., Zhao H., Wang J., Wei T., Li H., Jia B., Jamal M., Zhao H., Huang X., and Wei H., 2022, Production of triple-gene (GGTA1, B2M and CIITA)-modified donor pigs for xenotransplantation, Frontiers in Veterinary Science, 9: 848833. https://doi.org/10.3389/fvets.2022.848833 PMid:35573408 PMCid:PMC9097228 Yazdani S., Callemeyn J., Gazut S., Lerut E., Loor H., Wevers M., Heylen L., Saison C., Koenig A., Thaunat O., Thorrez L., Kuypers D., Sprangers B., Noël L., Lommel L., Schuit F., Essig M., Gwinner W., Anglicheau D., Marquet P., and Naesens M., 2019, Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation, Kidney International, 95(1): 188-198. https://doi.org/10.1016/j.kint.2018.08.027 PMid:30396694 Yılmaz S., Sahin T., and Saglam, K., 2020, What Are the immune obstacles to liver xenotransplantation which is promising for patients with hepatocellular carcinoma? Journal of Gastrointestinal Cancer, 51: 1209-1214. https://doi.org/10.1007/s12029-020-00495-9 PMid:32833222 Yoon S., Lee S., Park C., Choi H., Yoo M., Lee S., Hyun C., Kim N., Kang T., Son E., Ghosh M., Son Y., and Hur C., 2022, An efficacious transgenic strategy for triple knockout of xeno-reactive antigen genes GGTA1, CMAH, and B4GALNT2 from Jeju native pigs, Vaccines, 10(9): 1503. https://doi.org/10.3390/vaccines10091503 PMid:36146581 PMCid:PMC9505423 Yue Y., Xu W., Kan Y., Zhao H., Zhou Y., Song X., Wu J., Xiong J., Goswami D., Yang M., Lamriben L., Xu M., Zhang Q., Luo Y., Guo J., Mao S., Jiao D., Nguyen T., Li Z., Layer J., Li M., Paragas V., Youd M., Sun Z., Ding Y., Wang W., Dou H., Song L., Wang X., Le L., Fang X., George H., Anand R., Wang S., Westlin W., Güell M., Markmann J., Qin W., Gao Y., Wei H., Church G., and Yang L., 2020, Extensive germline genome engineering in pigs, Nature Biomedical Engineering, 5(2): 134-143. https://doi.org/10.1038/s41551-020-00613-9 PMid:32958897 Zhang H., Li Z., and Li W., 2021, M2 macrophages serve as critical executor of innate immunity in chronic allograft rejection, Frontiers in Immunology, 12: 648539. https://doi.org/10.3389/fimmu.2021.648539 PMid:33815407 PMCid:PMC8010191

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==