AMB_2024v14n1

Animal Molecular Breeding 2024, Vol.14, No.1, 106-118 http://animalscipublisher.com/index.php/amb 115 To realize the full potential of xenotransplantation, continued research and interdisciplinary collaboration are imperative. Researchers, clinicians, and regulatory bodies must work together to address the remaining challenges and translate these scientific advancements into clinical practice. Investment in research funding and the establishment of collaborative networks will be crucial in accelerating the development and implementation of xenotransplantation as a viable solution to the organ shortage crisis. Acknowledgements The author extend our sincere thanks to two anonymous peer reviewers for their invaluable feedback on the initial draft of this manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Coe T., Detelich D., Rickert C., Carroll C., Serifis N., Matheson R., Raigani S., Rosales I., Qin W., Kan Y., Layer J., Youd M., Westlin W., Kimura S., Azimzadeh A., Yang L., and Markmann J., 2020, Prolonged survival of genetically modified pig livers during machine perfusion with human blood, Transplantation, 104(S3): S37. https://doi.org/10.1097/01.tp.0000698436.68163.75 Cooper D., Hara H., Iwase H., Yamamoto T., Li Q., Ezzelarab M., Federzoni E., Dandro A., and Ayares D., 2019, Justification of specific genetic modifications in pigs for clinical organ xenotransplantation, Xenotransplantation, 26(4): e12516. https://doi.org/10.1111/xen.12516 PMid:30989742 PMCid:PMC10154075 Das S., Koyano-Nakagawa N., Gafni O., Maeng G., Singh B., Rasmussen T., Pan X., Choi K., Mickelson D., Gong W., Pota P., Weaver C., Kren S., Hanna J., Yannopoulos D., Garry M., and Garry D., 2020, Generation of human endothelium in pig embryos deficient in ETV2, Nature Biotechnology, 38(3): 297-302. https://doi.org/10.1038/s41587-019-0373-y PMid:32094659 Deng J., Yang L., Wang Z., Ouyang H., Yu H., Yuan H., and Pang D., 2022, Advance of genetically modified pigs in xeno-transplantation, Frontiers in Cell and Developmental Biology, 10: 1033197. https://doi.org/10.3389/fcell.2022.1033197 PMid:36299485 PMCid:PMC9590650 Eriksson S., Jonas E., Rydhmer L., and Röcklinsberg H., 2018, Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle, Journal of Dairy Science, 101(1): 1-17. https://doi.org/10.3168/jds.2017-12962 PMid:29102147 Fu R., Fang M., Xu K., Ren J., Zou J., Su L., Chen X., An P., Yu D., Ka M., Hai T., Li Z., Li W., Yang Y., Zhou Q., and Hu Z., 2020, Generation of GGTA1-/-β2M-/-CIITA-/-pigs using CRISPR/Cas9 technology to alleviate xenogeneic immune reactions, Transplantation, 104(8): 1566-1573. https://doi.org/10.1097/TP.0000000000003205 PMid:32732833 Halloran P., Venner J., Madill-Thomsen K., Einecke G., Parkes M., Hidalgo L., and Famulski K., 2018, The transcripts associated with organ allograft rejection, American Journal of Transplantation, 18(4): 785-795. https://doi.org/10.1111/ajt.14600 PMid:29178397 Hein R., Sake H., Pokoyski C., Hundrieser J., Brinkmann A., Baars W., Nowak-Imialek M., Lucas-Hahn A., Figueiredo C., Schuberth H., Niemann H., Petersen B., and Schwinzer R., 2019, Triple (GGTA1, CMAH, B2M) modified pigs expressing an SLA class Ilow phenotype—effects on immune status and susceptibility to human immune responses, American Journal of Transplantation, 20(4): 988-998. https://doi.org/10.1111/ajt.15710 PMid:31733031 Hu R., Barratt D., Coller J., Sallustio B., and Somogyi A., 2020, No major effect of innate immune genetics on acute kidney rejection in the first 2 weeks post-transplantation, Frontiers in Pharmacology, 10: 1686. https://doi.org/10.3389/fphar.2019.01686 PMid:32153387 PMCid:PMC7045476 Johnson L., 2022, Existing ethical tensions in xenotransplantation, Cambridge Quarterly of Healthcare Ethics, 31(3): 355-367. https://doi.org/10.1017/S0963180121001055 PMid:35659820

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==