Page 23 - 2011no96

Basic HTML Version

赵云云等
, 2011,
大豆抗镉污染低积累育种的研究进展
,
分子植物育种
(online) Vol.9 No.96 pp.1692-1699 (doi: 10.5376/mpb. cn.2011.09.0096)
1696
剂等在植物抗重金属过程中扮演重要角色,而
P1b
ATP
酶在拟南芥
(Morel et al., 2009)
和水稻
(Miyadate et al., 2011; Ueno et al., 2010a; Ueno et al.,
2010b)
籽粒积累过程中起关键作用。这些结果为转
基因育种和分子设计育种提供了遗传操作的关键
靶基因,可通过在根系中过量表达金属硫蛋白和植
物螯合剂提高植物抗性,可通过
RNAi
和人工小分子
技术降低籽粒重金属积累。因此整合基因组知识的
分子育种方法与常规育种相结合是选育抗污染低
积累大豆品种的有效途径。
作者贡献
赵云云、郭秀兰和钟彩霞是本研究综述相关文献查阅和
论文写作执行人;赵云云、郭秀兰和钟彩霞完成文献查阅整
理、论文初稿的写作;年海和马启彬参与论文的审阅;杨存
义是项目的构思者及负责人,指导论文写作与修改。全体作
者都阅读并同意最终的文本。
致谢
本研究由国家“
863
”高技术研究发展计划项目
(2007AA10Z143)
和农业公益性行业项目
(C10032)
资助。感谢
两位匿名的同行评审人的评审建议和修改建议。
参考文献
Ahsan N., Nakamura T., and Komatsu S., 2010, Differential
responses of microsomal proteins and metabolites in two
contrasting cadmium (Cd)-accumulating soybean cultivars
under Cd stress, Amino Acids, 2010 Nov 24. doi: 10.1007/
s00726-010-0809-7
Alvarez S., Berla B.M., Sheffield J., Cahoon R.E., Jez J.M., and
Hicks L.M., 2009, Comprehensive analysis of the Brassica
juncea root proteome in response to cadmium exposure by
complementary proteomic approaches, Proteomics, 9(9):
2419-2431
Arao T., and Ae N., 2003, Genotypic variations in cadmium
levels of rice grain, Soil Sci. Plant Nutr., 49: 473-479
Arao T., and Ishikawa S., 2006, Genotypic differences in
cadmium concentration and distribution of soybeans and
rice, JARQ, 40(1): 21-30
Arao T., Ae N., Sugiyama M., and Takahashi M., 2003,
Genotypic differences in cadmium uptake and distribution
in soybeans, Plant Soil, 251: 247-253
Balestrasse K.B., Gallego S.M., and Tomaro M.L., 2004,
Cadmium-induced senescence in nodules of soybean
(
Glycine max
L.) plants, Plant and Soil, 262(1-2):373-381
Balestrasse K.B., Gallego S.M., Benavides M.P., and Tomaro
M.L., 2005, Polyamines and proline are affected by
cadmium stress in nodules and roots of soybean plants,
Plant and Soil, 270(1): 343-353
Benitez E.R., Hajika M., Yamada T., Takahashi K., Oki N.,
Yamada N., Nakamura T., and Kanamaru K., 2010, A
major QTL controlling seed cadmium accumulation in
soybean, Crop Science, 50(5): 1728-1734
Bingham F.T., Page A.L., and Mahler R.J., 1975, Growth and
cadmium accumulation of plants grown on a soil treated
with a cadmium-enriched sewage sludge, Environ. Qua.,
14: 207-211
Boggess S.F., Willavize S., and Koeppe D.E., 1978, Differential
response of soybean varieties to soil cadmium, Agronomy
Journal, 70(5): 756-760
Buchet J.P., Lauwerys R., Roels H., Bernard A., Bruaux P.,
Claeys F., Ducoffre G., de Plaen P., Staessen J., Amery A.,
and Et A., 1990, Renal effects of cadmium body burden of
the general population, Lancet, 336(8717): 699-702
Cataldo D.A., Garland T.R., and Wildung R.E., 1981, Cadmium
distribution and chemical fate in soybean plants, Plant
Physiol, 68(4): 835-839
Chen Y.X., He Y.F., Yang Y., Yu Y.L., Zheng S.J., Tian G.M.,
Luo Y.M., and Wong M.H., 2003, Effect of cadmium on
nodulation and N2-fixation of soybean in contaminated
soils, Chemosphere, 50(6): 781-787
Dalcorso G., Farinati S., Maistri S., and Furini A., 2008, How
plants cope with cadmium: staking all on metabolism and
gene expression, J. Integr. Plant Biol., 50(10): 1268-1280
Ding Y., Chen Z., and Zhu C., 2011, Microarray-based analysis
of cadmium-responsive microRNAs in rice (
Oryza sativa
),
J. Exp. Bot., 62(9):1-11
Finger-Teixeira A., Ferrarese M.L., Soares A.R., Da S.D., and
Ferrarese-Filho O., 2010, Cadmium-induced lignification
restricts soybean root growth, Ecotoxicol. Environ. Saf.,
73(8): 1959-1964
Grant C.A., Clarke J.M., Duguid S., and Chaney R.L., 2008,
Selection and breeding of plant cultivars to minimize
cadmium accumulation, Sci. Total Environ., 390(2-3):
301-310
Harris N.S., and Taylor G.J., 2004, Cadmium uptake and
translocation in seedlings of near isogenic lines of durum
wheat that differ in grain cadmium accumulation, BMC
Plant Biol., 4: 4
Huang S.Q., Xiang A.L., Che L.L., Chen S., Li H., Song J.B.,
and Yang Z.M., 2010, A set of miRNAs from Brassica
napus in response to sulphate deficiency and cadmium