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Abstract Fungi are decomposers in most ecosystems and make important contribution to the ecological balance of our world. They
have great industrial importance due to the presence of different enzymes like laccase, superoxide dismutase, cellulases, amylases
and catalase etc. These enzymes performed synthetic and degradative functions. They are physiologically necessary for all of the
living organisms and are universally occur with wide genetic diversity in plants, animals and micro-organisms. Mostly the
micro-organisms are an attractive and efficient source of various enzymes and also owing to have the limited space required for their
cultivation and their ready susceptibility to genetic manipulations. Although the extensive research on various aspects of these
enzymes, there is scarcity of the knowledge about the role that governed the diverse specificity of these enzymes. After deciphering
the secrets about these enzymes would enable us to exploit their use in biotechnology. Fungi have vital roles in biotechnology such as
production of drugs and enzymes. Fungi can be cultured easily and hence they can be used in microbiological, genetic and molecular
research. It is very important to investigate genes and the role of genes that are responsible for the formation of these enzymes. In the
current review described the study of production of laccase, superoxide dismutase and catalase enzyme through various fungi, the
activity of enzymes and the genetic diversity of genes involved for the formation of these enzymes.
Keywords Laccase; Superoxide Dismutase; Cellulases; Amylases; Catalase; Enzymes; Fungi

Introduction
Fungi have been used in modern scientific research
due to their high potential for different enzymes
production based on genomic features. The great
proportion of soil mycoflora represented by saprobic
fungi plays an important roles in decomposition, thus
contribute to the global carbon cycle (Nevalainentics
and Penttila, 2003). Different catabolic activities by
different enzymes enable fungi to colonize on organic
matter and this feature explains the significant use of
filamentous fungi in biotechnology (Kaeberlein et al.,
2002). Filamentous fungi secrete different enzymes in
the growth medium, and most of these enzymes are
hydrolytic in nature and employed in different
industrial processes (Shakuntala et al., 2009). There is
need to characterize fungal strains at molecular level
for efficient enzyme production (Gerd et al., 2006).
Sordaria fimicola (Roberge ex Desm.) Ces. & De Not.,
is an important fungus belonging to Ascomycota.
Sordaria fimicola is a filamentous fungus growing as

extending and branching tubular cells (hyphae) that
generally grow radially with symmetric colony
(Alexopolous et al., 1996; Kavak, 2012). The natural
habitats of S. fimicola have been mainly defined
in dung of herbivorous animals (Masunga et al., 2006).
However, it has been isolated from different habitats
including maize stalks (Alma et al., 2000). Colonies of
S. fimicola grow rapidly on Potato Dextrose Agar
(PDA) medium in 7 days at 28 ºC reaching 9 cm in
diameter, from brown to dark brown mycelium with
homothallic perithecia (Jeamjitt, 2007).

The S. fimicola strains were first time isolated from
“Evolution Canyon I (EC I)” (Nevo, 1995) located
at mountain Carmel, Israel were included (Figure 1).
The south facing slope (SFS) of EC I has dry and
harsh environment with quite different flora and
fauna as compare to north facing slope (NFS) which
has moist and lush green environment. The age of
EC 1 is almost 3 to 5 million years (Nevo, 1997).
The north and south facing inclines are 100 and 400

mailto:saim1692@gmail.com
mailto:qurban.ali@cemb.edu.pk
http://dx.doi.org/mpb.2016.07.0009
http://dx.doi.org/mpb.2016.07.0009


Molecular Plant Breeding 2016, Vol.7, No.9, 1-16
http:// mpb.biopublisher.ca

2

meters apart from each other from bottom and top
respectively (Pavlicek et al., 2003). It was proposed
that mutation and genetic diversity was more
frequent in S. fimicola strains belonging to SFS as
compared to NFS of EC I (Nevo, 1995, 1998).
Genomic DNA is affected by environmental
changes which are the basis of biodiversity studies;
therefore, the scientific aspect of biodiversity needs
to be explored (Saleem et al., 2001). On the both
slopes pedology, geology (Karcz, 1959; Nevo et al.,
1998) and regional climate (mediterranean) is same
with annual rainfall approximately 600 mm, 1700
mm evapo-transpiration rate and mean temperature
for January and August is 13 and 28°C, respectively
(Atlas of Israel, 1970). Due to differences in

geographic orientations, south facing slope receives
more radiations annually as compare to northern
slope (Kirkby, 1990) and has savannoid vegetations,
while northern slope has dense evergreen and
deciduous trees (Nevo et al., 1999). According to
Pavlicek et al., (2003) the African south facing slope
receives 200-800 % more solar radiations than the
European north facing slope. One S. fimicola strain
(SF13) included in current research was obtained
from Miller’s Mycological Lab. UIUC, isolated from
the surroundings of University of Illinois at
Urbana-Champaign, USA. The Urbana-Champaign
city has humid continental climate having four
distinct seasons with hot summers (32.2 °C) and cold
winters (-17.8°C).

Figure 1 Picture of ‘Evolution Canyon I’ Mount Carmel, Israel with assigned stations. The green lush European’ temperate,
cool-mesic north facing slope (NFS) sharply contrast with warm-xeric, tropical, ‘African’ south facing slope (SFS). Adopted from
(Raz et al., 2009).

Lamb et al., (2008) worked on the crossing over, gene
conversion and variation in recombination properties of
S. fimicola wild strains isolated from opposite slope of
EC 1 and reported that recombination frequencies were
higher in south facing slope than that of north facing
slope where conditions are mild. The hypothesis that
mutation rate would be less in natural strains taken
from north facing slope, which has moist and lush
green environment than those from the harsh and
stressful environment of south facing slope was
proposed by Nevo, (1995) which needs to be further
explored. Variations in genome induced as a result of

stress have been found in several other organisms
including Drosophila melanogaster, A. mystacinus
(Nevo et al., 1998), S. fimicola (Rottenberg et al.,
2006) and N. linckia (Dvornyk and Nevo, 2003).
According to Nevo, (1997) 9 out of 14 model
organisms exhibited higher genetic diversity which
belongs to more harsh and heterogenous SFS.
Mutation frequencies, DNA repair, gene conversion,
genetic recombination, SNP, retrotransposons and
genetic diversity was found higher at more stressful
SFS (Nevo, 2001). Three fold higher rates of
heritable mutation in S. fimicola, a coprophilous
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fungus and 4 fold higher of genetic recombination
have been found in D. melanogaster on stressful
heterogenous SFS as compared to mild- moist NFS
(Nevo, 1997).

2 Genomic Diversity Analysis by RAPD
Analysis
Study and investigation of variations in genes can be
helpful in understanding various phenomena at
molecular level (Hibbett, 1992). Random amplified
polymorphic DNA analysis can be helpful in
identifying genomic modifications among organisms
of even same species due to high variability of
markers (Sunnucks, 2000; Nawaz et al., 2013).
Increased numbers of genetic characters lead towards
studying the diversity of fungal species (Ellstrand
and Roose, 1987). There are two types of basic
markers, PCR and non-PCR based, which are easy to
use with reliability, precision of analysis, statistical
influence and confidence of revealing polymorphism
in genes and genomes (Agerwal et al., 2008).
Molecular markers which are PCR based are
excellent tools for defining relationships in fungi at
genetic level (Welsh and McClelland, 1990; Duran et
al., 2009). The significance of PCR-based marker
methods is due to that it is rapid and needs small
amount of genomic DNA (Jacobson and Hedren,
2007). Random amplified polymorphic DNA analysis
first applied on genomic diversity analysis was based
on the use of oligonucleotide primers and genomic
DNA (Williams et al., 1990). Genomic variations of
different fungal species can be studied by using
RAPD markers (Crowhurst et al., 1991). Random
amplified polymorphic DNA technique involved the
availability of priming site on whole genome for a
single primer in inverted position and closes enough
to allow PCR amplification (Whitekus et al., 1994).
The short primers optimized for RAPD analysis have
become genomic markers which can be used for
quantitative assessment of genomic similarities of
strains from same or different species of organisms
(Leung et al., 1992).

In addition to RAPD several other marker systems
are being applied for exploration of biodiversity
including RFLP, SSR and AFLP (William and Clair,
1993; karp et al., 1997). According to Nesbitt et al.,
(1995) RAPD markers can be used in paternity

analysis, taxonomic-based identification and genetic
diversity (Van de Ven and McNicol, 1995). Random
Amplified Polymorphic DNA analysis is being used
for generating genomic maps (Tulsieram et al., 1992)
and in detecting loci of interest for studying
molecular biodiversity in fungi (Plomion et al.,
1996). Random Amplified Polymorphic DNA
markers are cheap and utilize little amount of
genomic DNA for analysis (Soares et al., 2008).
Random Amplified Polymorphic DNA markers
analysis is more reliable in terms of reproducibility
and provides high resolution of genotype
distribution in natural populations (Brahmane et al.,
2008). Therefore, RAPD has been a very popular
molecular technique to generate genus-specific,
species specific or strain-specific diagnostic DNA
fragments or fingerprints, identifying genes linked
to traits of interest; undertaking genetic diversity
studies and gene mapping for development of
diagnostic and identification of living organisms
(Bazzicalupo and Fani, 1996; Abad et al., 1998;
Ransom et al., 1998). Random Amplified
Polymorphic DNA is also being used in population
genetics studies like genetic diversity, divergence
within and among populations based on assumption
of Hardy-weinberg equilibrium (Brown and
Epifanio, 2003). It detects the genetic variations in
the genome of an organism in terms of sequence
variation at the priming regions (Magalhães et al.,
2007). Similarities in banding profiles among
strains (i.e. the number and sizes, but not the
intensity of amplified bands) can be calculated and
used to infer strain relationships (Dutra et al., 2008).
Random Amplified Polymorphic DNA technique
can also be applied to estimate the populations, for
which no particular molecular markers have been
established, thus facilitating the screening process
of genetic variability (Lacerda and Wrobel, 2001).
Due to nucleotide sequence differences either by
insertions or deletions in the fragment size between
two primer sites, length differences occur that may
lead to polymorphism which is related to genomic
diversity (Agerwal et al., 2008).

Shah et al., (2006) differentiated the A. niger genome
by using RAPD and the 0.7 kb fragment amplified
was used to further differentiate from other strains of
A. niger (ATCC 16880). Genetic relationship among
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A. niger, Aspergillua flavus and Aspergillus
parasiticus were determined by RAPD analysis
(Swelim, 2005a) which revealed 37, 59, and 51 %
polymorphism, respectively. Furthermore, RAPD
analysis demonstrated that genetic similarity was
37 % in A. niger, 58 % in A. flavus, and 51.5% in A.
parasiticus (Aiat, 2006). Random Amplified
Polymorphic DNA analysis was used in detecting
genetic diversity in many phytopathogenic fungi
(WÖstemeyer and Kraibich, 2002; Sharma et al., 2002;
Sharma, 2003). Due to high variability RAPD markers
can be used to detect differences within and among
species at genomic level (William et al., 1990; Parker
et al., 1998; Sunnucks, 2000) as well it is also helpful
to explore intra-specific variations in large number of
fungi on genetic bases (Fegan et al., 1993; Moore et
al., 2001).

2.1 Ribotyping
The 18S rRNA gene has been used to characterize
fungal strains at species level (Meyer et al., 2010).
Phylogenetic analyses of fungal taxa at different levels
can be done by using 18S rRNA gene that is
considered as phylogenetic marker. In all living
organisms ribosomal ribonucleic acid (rRNA) is
involved in protein synthesis and it comprises of 90 %
of total RNA (Forster and Toth, 2003). The ribosome
has two subunits smaller subunit (SSU) and large
subunit (LSU) (Higgs, 2000). The LSU acts as
ribozyme, which catalyzes the peptide bond formation.
All SSUs have one large ribosomal subunit molecule
termed as 16S in Archaea, Bacteria and 18S in
Eukaryotes (Moore, 2009). The 18S rRNA gene
consists of ~1900 nucleotides and responsible for the
translation of different proteins. The sequences of 18S
rRNA genes are widely used to find out evolutionary
relationship among different organisms (Smit et al.,
2007). The flanking region of the 18S rRNA gene is
highly conserved and has been used as a reliable
marker to determine environmental biodiversity in the
species of different organisms (Woese et al., 1990;
Hanif et al., 2012). To segregate fungi into diverse
strains within species amplification of rRNA gene for
ribotyping and SNPs analysis has become essential
molecular aspect (Balajee et al., 2008). Molecular
systematics is an important tool in recent taxonomy of
fungi (Bruns et al., 1991, Mitchell et al., 1995). DNA
sequence data of 18S, 26S, ITS (Internal Transcribed

Spacer) along with mitochondrial rDNA are
abundantly used in current phylogenetic studies in
case of eukaryotic cells (Wilmotte et al., 1993; Shan et
al., 2015; Zameer et al., 2015). Due to conserved
nature of 18S rDNAs they are applied in phylogenetic
analyses of higher taxonomic rank fungi (Swann and
Taylor, 1993). The advent of molecular phylogenetic
and the use of ribosomal RNA (rRNA) as a molecular
chronometer extended phylogenetic studies to
different organisms including the microbial world
where it was difficult to find distinguishable,
observable phenotypes and resulted in the
classification of life into a tripartite world (Woese et
al., 1990). A number of insertions and deletions have
been reported in variable domains of rRNA gene
including V2, V4, V6, 8, and V9 domains (Bruns et al.,
1991). Mitchell et al., (1995) have described that in
modern fungal technology molecular systematics has
been proven to be a valuable tool. 18S rRNA gene
sequences and internal transcribed spacer (ITS) region
has an essential role in characterization of eukaryotic
organisms. 18S rRNA gene is used in phylogenetic
analysis of fungi even at species level (Swann and
Taylor, 1993; Wilmotte et al., 1993; Javed et al.,
2015).

3 Biochemical and Molecular Studies of
Fungal Enzymes and Their Genes
Fungi are decomposers in most ecosystems make an
important contribution to the ecological balance and
also have great industrial application due to presence
of different enzyme genes (Yuan et al., 2006). Many
fungi form symbiotic relationships with other
organisms, mostly plants, while they also constitute
the majority of plant pathogens and some fungi also
cause diseases in animals and humans (Bernhard, et al.,
1995). Fungi thrive in diverse environments and can
exploit marginal living conditions in large part
because they produce different enzymes including
laccases, cellulases, catalases and superoxide
dismutases which are capable of performing difficult
chemical reactions (Wheeldon et al., 2008). According
to Wheeldon et al., (2008) many industrially important
enzymes including cellulases, catalases, laccases and
amylases are obtained from Aspergillus. Archer, (2000)
described that total sixteen (16) fungal enzymes are
used in the food industry and thirteen (13) of them
has been obtained from Aspergillus. Fungi have vital
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roles in biotechnology such as production of drugs
and enzymes (Archer et al., 2008). Fungi can be
cultured easily and hence they can be used in
microbiological, genetic and molecular research
(Hoffmeister and Keller, 2007).

Aspergillus is wide spread fungus in nature, including
soil, colonizing plant materials and decomposing
agricultural crops (Varga et al., 2004) as well as most
common air borne fungi (Gregory, 1973). Many
species of Aspergillus are causative agents of food
decay and others are used in fermentation industry
(Bennett & Klich, 1992). Aspergillus niger is a potent
source of enzyme production and has been exploited
commercially for the production of different
extracellular enzymes (Kitani and Olive, 1967). Based
on the secretion capacities, many efforts have also
been undertaken to develop A. niger as a producer of
heterologous proteins which include hydrolytic
enzymes (Joosten et al., 2003). Fungi have great
potential to decompose wastes and this is the reason
why scientists are studying fungi at molecular level
for different enzymes genes (Shimosaka et al., 1996).
The A. niger genome size is 36 Mb and contains over
14,000 genes (Bennett and Klinch, 1997). Sordaria
macrospora is a filamentous ascomycete and its
genome has been sequenced because it has been used
as model organism in fungal developmental studies
and in meiosis analysis, (Nowrousian et al., 2012); its
genome size is 39.8 Mb containing 7 chromosomes
(Teichert et al., 2012). Sordaria fimicola and S.
macrospora are closely related to the N. crassa,
however the natural habitat of N. crassa is burned
vegetation and soil all over the world (Esser, 1982),
while Sordaria species grow on herbivore dung in
temperate climate (Jacobson et al., 2004). Sordaria
fimicola strains have not been evaluated earlier for
different enzymes production, therefore enzyme
production in S. fimicola were included in the current
research.

3.1 Laccase enzyme
Laccases (EC 1.0.3.2) have oxido-reductase function
and used in many industrial processes as biocatalyst
(Lee et al., 2004). This enzyme has several usages in
different industrial processes including biopulping,
biobleaching and treatment of industrial waste water;
textile dye discoloration and a wide range of other

applications, hence the most important biocatalyst in
fungal biotechnology (Schauer and Borriss, 2004;
Bourdais et al., 2012). Couto and Toca- Herrera,
(2007) described that laccases are capable of oxidizing
phenolic and non-phenolic aromatic compounds. This
enzyme is used for finishing and dying of textile,
making wine cork and in tooth whitening items
(Xu-Feng, 2005). Laccase is monomers having a
molecular mass in the range of 40-130 kDa with a
covalently linked carbohydrate content of 10-25 % in
fungi and 20-45 % in plants (Claus, 2003). The
carbohydrate moiety typically consists of mannose,
N-acetylglucosamine and galactose that may be
helpful to maintain the stability and configuration of
enzyme (Kunamneni et al., 2008). Laccase from N.
crassa is an inducible secretory enzyme and the
production of laccase is repressed in vegetative
structures of fungus, but can be induced by treatment
with low concentrations of cycloheximide (Tamaru
and Inoue, 1989). Other fungi that have laccase
activity include Trichoderma (wood-decaying
ascomycetes) and Botryosphaeria (Vasconcelos et al.,
2000; Hatakka, 2001; Pointing et al., 2005). Laccase
has ability to oxidize compounds like polyphenols,
cyclic diamines, methoxy substituted phenols and
other compounds (Baldrian, 2006). In case of lower
fungi such as Zygomycetes and Chytridiomycetes
production of this enzyme has never been revealed
(Morozova et al., 2007). Due to higher oxidation
reduction potential (+800 mV of the fungal laccase
enzymes as compared to bacterial and plant laccases),
these fungal enzymes have more application in
biotechnology (Thurston, 1994) for their use as
processing aids in food industry (Minussi et al., 2002,
Minussi et al., 2007).

Genes encoding laccase enzymes have been studied in
different filamentous fungi like A. niger, A. oryzae
and T. reesei (Couto and Toca-Herrera, 2007;
Hoffmeister and Keller, 2007). Laccases are
copper-containing enzymes with several biological
applications (Mayer and Staple, 2002). A lot of fungi
possess many endogenous genes whose expression is
tightly regulated (FeRNA´ndez-Larrea and Stahl,
1996). Laccases play an important role in the
degradation of lignin as reported in Basidiomycetes by
Crestini et al., (2003). FeRNA´ndez-Larrea and Stahl,
(1996) described that exposure to phenolic
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compounds also results in the induction of laccase in
Ascomycetes. During asexual development in A.
nidulans, yA gene (a gene encoding the
developmentally regulated enzyme conidial laccase)
plays crucial role (Aramayo and Timberlake, 1990).
Scherer and Fisher, (2001) found second and third
(tilA) laccase at the sexual phase and in the vegetative
cells at hyphal tip respectively, although tilA exhibits
lower expression. Brijwani et al., (2010) described
that laccases have ability to make processing of food
economically and ecofriendly. Excessive availability
of laccase in different fungal genera confirms their
wide occurrence in fungi specifically in white rot
fungi (Revankar and Lele, 2006). Agematu et al.,
(1993) reported that laccases are secretory enzymes
and are released in the media by different filamentous
fungi. The laccase gene sequences amplified and
sequenced from G. lucidium, P. brevispora and
Trametes exhibit 65-74% nucleotide sequence
homology (Galhaup et al., 2002). According to Lyons
et al., (2003) fungal species belonging to Ascomycota
possess differnt laccase encoding genes which are
involved in the oxidization of syringaldazine dye.

In order to enhance production of laccase there is
increased research trend towards utilization of
recombinant fungal strains. Abyanova et al., (2010)
has performed many experiments to transfer the
laccase genes of T. hirsute into the P. canescens, an
ascomycete fungus for heterologous expression and
determined that after successful transformation 98%
enzyme activity was visible in liquid culture medium.
Genes coding for several laccases from Trametes C30
have been sequenced and cloned in S. cerevisiae. This
will make possible to produce large amount of
enzymes which are produced in low quantity by the
fungus itself (Klonowska et al., 2005). It is the need of
hour to move ahead in the field of research to confirm
high laccase production by applying large scale
fermentation methods. Germann and Lerch, (1986)
cloned the laccase gene from N. crassa and its
nucleotide sequence was determined.

3.2 Superoxide dismutase (SOD) enzyme
Superoxide dismutase is present in all living
organisms that efficiently transform superoxide (O2-)
into hydrogen peroxide (H2O2) and molecular oxygen
(Fridovich, 1995). The different types of superoxide

dismutase enzyme required different cofactors,
including copper, zinc, manganese, iron or nickel.
Superoxide dismutase is ubiquitous in nature and on
the basis of metal cofactors there are three main SOD
families, while Cu-Zn-SOD present in the cytosol of
eukaryotes (Tainer et al., 1983; Javed et al., 2015). It
was revealed by Gregory et al., (1973) that this is
present in all oxygen metabolizing cells. Superoxide
oxide dismutase has been found and purified in
different organisms, including fungus N. crassa,
bacterium E. coli, green peas and wheat (Misra and
Fridivich, 1972; Beauchamp and Fridovich, 1973).
Superoxie dismutases are universal protective tools
that protect the cell from damage and well described
in prokaryotic and eukaryotic cells (Frohner et al.,
2009). They have also been reported from anaerobic
bacteria by Hewitt and Morris (1975). Moore et al.,
(2002) described that in filamentous fungi SODs have
rarely been reported, as compare to prokaryotic cells
and they have many Cu-Zn-SODs. Expression of
Cu-Zn-SOD and Fe-SOD did not change considerably
during the process of mycorrhizal development in
plants (Liu et al., 2003; Lanfranco et al., 2005).
Superoxide is reactive species with ability to react
with different substances that result from metabolic
processes. Superoxide dismutase enzymes found in
aerobic and anaerobic organisms catalyze the
breakdown of superoxide radical (Shirwaikar and
Punitha, 2007). The scavenging ability of plant
extracts superoxide is perhaps due to the presence of
flavonoids (Zheng et al., 2008).

Zheng et al., (2008) studied the antioxidant activity of
Tolypocladium fungus was obtained from wild C.
sinesis, an endangered species. Tolypocladium sp. Ts-1
was isolated from fruiting body of a wild C. sinensis,
one of the well reputed traditional Chinese medicine
and health foods. Hot water extracts obtained from
cultured mycelia of Tolypocladium sp. were analyzed
through different systems in vitro. The extracts showed
superoxide dismutase (SOD) activity of 35.6 U/mg
proteins and are involved in scavenging superoxide
radical in concentration dependent manner with IC50
value of 1.3 mg/mL. Using deoxyribose assay method,
analogous radical scavenging action was determined
both with site specific and non-site specific hydroxyl
radicals. The aqueous extract of Tolypocladium sp.
mycelium has strong antioxidant activities and hss a

http://www.hindawi.com/48936174/
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potential source of natural antioxidant products.
Superoxide dismutase has detoxifying capabilities
therefore fragment of gene that encodes two Mn-SODS
and Fe-SOD was detected in lettuce plant (Ruiz-Lozano
et al., (2001). Four types of Cu/Zn-SODs genes i.e.
SOD1, SOD4, SOD5 and SOD6 and two types of
Mn-SODs i.e. SOD2, SOD3 have been detected in C.
albicans (Martchenko et al., 2004). Superoxide
dismutases genes also have been found in human
pathogenic fungi likeC. neoformans (Fang et al., 2002).

3.3 Catalase enzyme
Catalases (EC 1.11.1.6) are present in all those
organisms which are exposed to oxygen and catalyze
the decomposition of hydrogen peroxide (H2O2) into
water and oxygen (Chelikani et al., 2004). According to
Montavon et al., (2007) the conversion of H2O2 into
water and oxygen is necessary in living systems as
H2O2 is toxic to cells and the main site of H2O2
production is mitochondrion (Turrens, 2003). In
textile industry catalase is used to remove H2O2 from
the fabrics (Goodsell, 2004) and in food industry this
enzyme is used to get rid of hydrogen peroxide from
food products (Chu et al., 1975). Catalase is a tetramer
and consisted of four polypeptide chains with more
than 500 amino acids (Boon et al., 2007). It has vital
role in reproductive reactions with highest turnover
number of all enzymes; just a single catalase molecule
can convert millions of H2O2 to water and oxygen in a
second (Goodsell, 2004). According to Zamocky et al.,
(2012) it is evident from phylogenetic analysis that the
corresponding genes are transferred during later steps
of kat G evolution through HGT (Horizontal Gene
Transfer) possibly from bacteriodetes to the ancestral
genome of fungi. Commercially, catalases are isolated
from mammalian liver and A. niger (Frost and Moss,
1987). In food and textile industries catalases are used
to remove hydrogen peroxide that is applied for
purpose of sterilization or bleaching (Akertek and
Tarhan, 1995). Catalase from Aspergillus is useful as it
is more resistant to heat (Nisshikawa et al., 1993).
Hydrogen peroxide is a strong nucleofilic oxidant
degraded by catalase and peroxidase synergistically to
protect the cells (Norton and Vuillemard, 1994). Fungi
are good producer of catalases as the fungal growth
take place in intimate contact with environment;
therefore catalases are continuously exposed and
affected by physical and chemical stress factors

(Kurakov et al., 2001). All aerobic organisms generate
reactive oxygen species, especially through aerobic
respiration, as a result of metabolic activity in fungi
reactive oxygen species (ROS) are formed and their
production increases due to different stress factors like
starvation, mechanical damage, light and interaction
with other living organisms (Loewen, 1997; Aguirre et
al., 2005). During the development of fungi regulation
of ROS level is very crucial (Gochev and Krastanov,
2007). As possessing mechanisms to adapt to
oxidative stress, fungi secrete SOD enzymes in the
extracellular space to minimize the negative impact of
reactive oxygen species (Tanaka and Izumitsu, 2010).

Catalases are regulated in different ways in bacteria,
plants and fungi (Ruis and Koller, 1997). These
enzymes are also concerned with development in
several organisms (Navarro et al., 1996). Cat-1 is
involved in conidia formation and is suitable for their
existence, as it shows a high resistance to high
temperature as well to many other denaturing
substances (Willekens et al., 1994). Catalases are
highly glycosylated enzymes and therefore are not
affected by H2O2 concentration (Diaz et al., 2001). In
the liquid medium activity of catalase is 60 times
higher in conidia as compared to growing hyphae
(Hansberg, 1996). Chary and Natvig, (1989) found
three distinct types of catalases in the life cycle of N.
crassa. The activity of catalase-3 was strong at the last
stage of exponential growth, while catalase-2 was
more active in aerial hyphae, and activity of
monofunctional cat-1 enhances several times during
conidia formation (Hansberg, 1996; Lledias et al.,
1999). The kinetic and molecular studies suggest that
cat-1 as well as other large catalases could tolerate
high concentrations of hydrogen peroxide (Lardinois
and Rouxhet, 1996), high thermoresistance (≥ 70°C)
(Switala et al., 1999) and enhanced resistance to
denaturants (Calera et al., 2000). Fungal catalases may
have specialized functions. Neurospora crassa has
three uncharacterized catalase genes (Chary and
Natvig, 1989) and only two have been characterized in
case of A. nidulans (Navarro and Aguirre, 1998). In N.
crassa, catalases viz. CAT-1, CAT-2 and CAT-3 are
recognized to break H2O2 into water and oxygen. In
case of A. niger, extracellular catalase prevents cells
from H2O2 (Witteveen et al., 1992). In A. nidulans two
differentially regulated genes Cat-A and Cat-B have

http://en.wikipedia.org/wiki/Tetrameric_protein
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been found (Klotz and Loewen, 2003). A third catalase
gene named as Cat-C with a predicted 475 amino
acids polyoeptide chain and a peroxisome targeting
signal was characterized by Kawasaki and Aguirre,
(2001). It has been revealed from genomic analysis
that two catalase peroxidases namely Kat-G1 and
Kat-G2 are encoded by two genes in fungi (Zamocky
et al., 2009; Zamocky et al., 2012). In genetic and
biochemical studies Chary and Natvig, (1989)
described that N. crassa contains three catalases that
are encoded by three different genes. The functions of
three enzymes differ in response to heat shock,
development and superoxide mediated stress. The
three loci that we have designated as cat-1, cat-2 and
cat-3 are located to the right arm of chromosomes III,
VII and III, respectively. It was confirmed that during
rapid growth of mycelia, cat-1 (designated as Cat-1;
approximate molecular weight, 315,000; pI 5.2) was
predominant and its activity was gradually increased
in paraquat treated and heat shocked mycelium.
Further investigations revealed that Cat-2 (Mw,
165,000; pl 5.4) was not present in rapid growth
mycelia, however, present in conidia and stationary
phase mycelium at low level. This catalase was
predominant in extracts obtained from mycelium heat
shocked for 2 hours, while Cat-3 (Mw, 340,000; pI 5.5)
was predominant catalase in extracts derived from
mature conidia.

Conclusion
It may be concluded from all above discussion, the
culturing of Sordaria fimicola should be promoted to
produce higher amounts of enzymes and enhancing
biotechnology applications of fungi.
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