Page 9 - Triticeae Genomics and Genetics

Basic HTML Version

Triticeae Genomics and Genetics 
TGG 2010, Vol.1, No.1
http://tgg.sophiapublisher.com
Page 6 of 7
nucleus-mitochondrion
incompatibility.
Thus,
mitochondrial mutations induce abnormal anther
development and the CMS trait occurred. The
introduction of nuclear restorer gene(s) from restorer
line 5253 reversed the changes caused to the
mitochondrial genome thereby resulting in fertile F1
hybrids. The results confirmed the mtDNA variation
among Aegilops species, CMS lines and their
fertility-restored F1 hybrids.
In theory, the cytoplasms of these four CMS lines are
derived from the respective Aegilops species (Ae.
kotschyi, Ae. variabilis, Ae. ventricosa and Ae.
bicornis). However, distinct differences were detected
between Aegilops and CMS lines. The variation of
mtDNA in Aegilops spp. and their respective CMS
lines may reflect the fertility divergence. Since a
variety of mtDNA mutations can cause the CMS trait,
it was not possible to determine which variation of
mtDNA patterns is linked with the CMS trait. Further
studies, are therefore needed to reveal the relationship
between the polymorphic markers and CMS trait.
In most cases, fertility restorer genes appear to
regulate gene expression at a transcriptional or
posttranscriptional level (Singh et al., 1996; Li et al.,
1998). Recent studies also have shown evidence of
fertility restoration through mtDNA alterations. In
maize, spontaneous reversion to fertility in CMS-S
maize involves alterations of the mitochonrial genome
(Schardl et al., 1985). In common bean, fertility
restorer gene Fr locus results in the loss of a particular
CMS-associated mtDNA region (He et al., 1995). Our
results demonstrated the variation of mtDNA in CMS
lines and their fertility-restored F1 hybrids. It's
possible that fertility restoration involves a strong
influence of the restorer genes on mtDNA
organization. Although the differences in RAPD
patterns are not necessarily associated with CMS trait,
they can be informative molecular markers to map
CMS-associated gene regions. Further studies are under
way converting the RAPD markers into SCAR markers
and cloning CMS-associated mitochondrial gene.
Acknowledgements
We thank Xudong Zhu for γ-ray irradiation and this work is supported by a
funding (2009ZX08009-112B) from the Ministry of Agriculture, China.
References
Almeida J., Rocheta M., and Galego L., 1997, Genetic control of flower
shape in
Antirrhinum majus
, Development, 124: 1387-1392
Arumuganathan K., and Earle D., 1991, Nuclear DNA content of some
important plant species, Plant Molec. Biol. Reporter, 9: 208-218
Asamizu E., Watanabe M., and Tabata S., 2000, Large Scale Structural
Analysis of cDNAs in the Model Legume,
Lotus japonicus
,
J. Plant
Res., 113: 451-455
Blondon F., Marie D., Brown S., and Kondrosi A., 1994, Genome size and
base composition in
Medicago sativa
and
M. truncatula
species,
Genome, 37: 264-270
Cannon S.B., Crow J.A., Heuer M.L., Wang X., Cannon E.K.S., Dwan C.,
Lamblin A.F., Vasdewani J., Mudge J., Cook A., Gish J., Cheung F.,
Kenton S., Kunau T.M., Brown D., May G.D., Kim D., Cook D.R.,
Roe B.A., Town C.D., Young N.D., and Retzel E.F., 2005, Databases
and Information Integration for the
Medicago truncatula
Genome
and Transcriptome, Plant Physiol., 138(1): 38 - 46
Carpenter R., and Coen E., 1990, Floral homeotic mutations produced by
transposon-mutagenesis in Antirrhinum majus, Genes Devel., 4(9):
1483-1493
Chen J.H., Pang J.L., Wang L.L., Luo Y.H., Li X., Cao X.L., Lin K., Ma W.,
Hu X.H., and Luo D., 2006,
Wrinkled petals and stamens 1
, is
required for the morphogenesis of petals and stamens in
Lotus
japonicus
, Cell Research, (16): 499-506
Corley S.B., Carpenter R., Copsey L., and Coen E., 2005, Floral asymmetry
involves an interplay between TCP and MYB transcription factors in
Antirrhinum
, Proc. Natl. Acad. Sci. USA., 102, 5068–5073
Dong Z.C., Zhao Z., Liu C.W., Luo J.H., Yang J., Huang W.H., Hu X.H.,
Wang T.L., and Luo D., 2005, Floral patterning in
Lotus japonicus
,
Plant Physiol., 137:1271-1282
Ellis T.H.N., Turner L., Hellens R.P., Lee D., Harker C. L., Enard C.,
Domoney C., and Davies D.R., 1992, Linkage Maps in Pea, Genetics,
130: 649-663
Feldmann K.A., 1991, T-DNA insertion mutagenesis in
Arabidopsis
:
mutaional spectrum, Plant J
.
, 1: 71-82
Feng X.Z., Zhao Z., Tian Z.X., Xu S.L., Luo Y.H., Cai Z.G., Wang Y.M.,
Yang J., Wang Z., Weng L., Chen J.H., Zheng L.Y., Guo X.Z., Luo J.H.,
Sato S., Tabata S., Ma W., Cao X.L., Hu X.H., Sun C.R., and Luo D.,
2006, From the Cover: Control of petal shape and floral zygomorphy in
Lotus japonicus
, Proc. Natl. Acad. Sci. USA., 103:4970-4975
Galego L., and Almeida J., 2002, Role of DIVARICATA in the control of
dorsoventral asymmetry in Antirrhinum flowers, Genes Dev., 16(7):
880-91
Grant D., Nelson R.T., Cannon S.B. and Shoemaker R.C., SoyBase, the
USDA-ARS soybean genetics and genomics database, 2009, Nucleic
Acids Research Advance Access originally published online on
December 14, 2009(D843-D846; doi:10.1093/nar/gkp798)
Greilhuber J., and Oberrmayer R., 1997, Genome size and maturity group in
Glycine max
(soybean), Heredity,
78: 547-551
Handberg K., and Stougaard J., 1992,
Lotus japonicus
,
an autogamous,
diploid legume species for classical and molecular genetics, Plant J, 2:
487-496
Kawasaki S., and Murakami Y., 2000, Genome analysis of
Lotus japonicus
,
J. Plant Res., 113: 497-506
Lamblin A.F.J., Crow J.A., Johnson J.E., Silverstein K.A., Kunau T.M.,
Kilian A., Benz D., Stromvik M., Endré G., VandenBosch K.A., Cook
D.R., Young N.D., and Retzel E.F., 2003, MtDB: a database for
personalized data mining of the model legume Medicago truncatula
transcriptome, Nucleic Acids Res., 31(1): 196-201
Luo D., Carpenter R., Vincent C., Copsey L., and Coen E., 1996, Origin of
floral asymmetry in
Antirrhinum
, Nature
,
383: 794-799
Luo D., Carpenter R., Copsey L., Vincent C., Clark J., and Coen E., 1999,
Control of organ asymmetry in flowers of
Antirrhinum
, Cell,
99(4):
367-376